Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mar Drugs ; 22(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248639

RESUMEN

Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g-1 fish d-1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.


Asunto(s)
Ciguatoxinas , Dinoflagelados , Animales , Humanos , Ciguatoxinas/toxicidad , Distribución Tisular , Exposición Dietética , Peces
2.
Harmful Algae ; 118: 102308, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195424

RESUMEN

An increase in cases of ciguatera poisoning (CP) and expansion of the causative species in the South Pacific region highlight the need for baseline data on toxic microalgal species to help identify new areas of risk and manage known hot spots. Gambierdiscus honu is a toxin producing and potential CP causing dinoflagellate species, first described in 2017. Currently no high-resolution geographical distribution, intraspecific genetic variation or toxin production diversity data is available for G. honu. This research aimed to further characterize G. honu by investigating its distribution using species-specific real-time polymerase chain reaction assays at 25 sites in an area spanning ∼8000 km of the Coral Sea/Pacific Ocean, and assessing intraspecific genetic variation, toxicity and toxin production of isolated strains. Assessment of genetic variation of the partial rRNA operon of isolates demonstrated no significant intraspecific population structure, in addition to a lack of adherence to isolation by distance (IBD) model of evolution. The detected distribution of G. honu in the Pacific region was within the expected tropical to temperate latitudinal ranges of 10° to -30° and extended from Australia to French Polynesia. In the lipophilic fractions, the neuroblastoma cell-based assay (CBA-N2a) showed no ciguatoxin (CTX)-like activity for nine of the 10 isolates, and an atypical pattern for CAWD233 isolate which showed cytotoxic activity in OV- and OV+ conditions. In the same way, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed no Pacific-CTXs (CTX-3B, CTX-3C, CTX-4A, CTX-4B) were produced by the ten strains. The CBA-N2a assessment of the hydrophilic fractions showed moderate to high cytotoxicity in both OV- and OV+ condition for all the strains showing a cytotoxic profile similar to that of gambierone. Indeed, this study is the first to show the cytotoxic activity of gambierone on mouse neuroblastoma cells while no cytotoxicity was observed when 44-MG was analysed at the same concentrations using the CBA-N2a. Analysis of the hydrophilic via LC-MS/MS confirmed production of gambierone in all isolates, ranging from 2.1 to 38.1 pg/cell, with 44-methylgambierone (44-MG) also produced by eight of the isolates, ranging from 0.3 to 42.9 pg/cell. No maitotoxin-1 was detected in any of the isolates. Classification of the G. honu strains according to the quantities of gambierone produced aligned with the classification of their cytotoxicity using the CBA-N2a. Finally, no maitotoxin-1 (MTX) was detected in any of the isolates. This study shows G. honu is widely distributed within the Pacific region with no significant intraspecific population structure present. This aligns with the view of microalgal populations as global metapopulations, however more in-depth assessment with other genetic markers could detect further structure. Toxicity diversity across 10 isolates assessed did not display any geographical patterns.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Neuroblastoma , Animales , Cromatografía Liquida/métodos , Intoxicación por Ciguatera/epidemiología , Dinoflagelados/química , Éteres , Marcadores Genéticos , Toxinas Marinas/toxicidad , Ratones , Ratones Endogámicos CBA , Oxocinas , Espectrometría de Masas en Tándem
3.
Mar Drugs ; 20(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736151

RESUMEN

Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Cromatografía Liquida , Intoxicación por Ciguatera/etiología , Ciguatoxinas/análisis , Dinoflagelados/química , Polinesia , Espectrometría de Masas en Tándem
4.
Mar Drugs ; 20(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447924

RESUMEN

Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths' yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.


Asunto(s)
Lubina , Intoxicación por Ciguatera , Ciguatoxinas , Animales , Ciguatoxinas/análisis , Ciguatoxinas/toxicidad , Arrecifes de Coral , Peces , Polinesia , Alimentos Marinos/análisis
5.
Mar Pollut Bull ; 176: 113472, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35219077

RESUMEN

Oyster farming for black pearl production is central in French Polynesia. It is the second source of national income and provides substantial job opportunities, notably in remote atolls. However, this sector has been undermined by successive crises, such as mass-mortalities of wild and farmed oyster stocks that have impacted entire lagoons. An option to revive the activity consists of reintroducing oysters in strategic benthic locations selected to maximize reproduction and dispersal of larvae throughout the lagoon, hence promoting recolonization and spat collection for farming. For Takaroa, a Tuamotu atoll recently impacted by mortalities, a systematic prioritization approach identified these restocking sites, using environmental and socio-economic criteria such as: location of suitable habitats for oyster settlement, larval connectivity estimated from hydrodynamic circulation model, farming waste accumulation, and opportunity cost to fishers and farmers who lose access to restocking areas. This approach provides managers with a portfolio of restocking options.


Asunto(s)
Pinctada , Agricultura , Animales , Acuicultura , Ecosistema , Hidrodinámica , Polinesia
6.
Mar Drugs ; 19(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34822515

RESUMEN

Ciguatera poisoning (CP) cases linked to the consumption of deep-water fish occurred in 2003 in the Gambier Islands (French Polynesia). In 2004, on the request of two local fishermen, the presence of ciguatoxins (CTXs) was examined in part of their fish catches, i.e., 22 specimens representing five deep-water fish species. Using the radioactive receptor binding assay (rRBA) and mouse bioassay (MBA), significant CTX levels were detected in seven deep-water specimens in Lutjanidae, Serranidae, and Bramidae families. Following additional purification steps on the remaining liposoluble fractions for 13 of these samples (kept at -20 °C), these latter were reanalyzed in 2018 with improved protocols of the neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Using the CBA-N2a, the highest CTX-like content found in a specimen of Eumegistus illustris (Bramidae) was 2.94 ± 0.27 µg CTX1B eq. kg-1. Its toxin profile consisted of 52-epi-54-deoxyCTX1B, CTX1B, and 54-deoxyCTX1B, as assessed by LC-MS/MS. This is the first study demonstrating that deep-water fish are potential ciguatera vectors and highlighting the importance of a systematic monitoring of CTXs in all exploited fish species, especially in ciguatera hotspots, including deep-water fish, which constitute a significant portion of the commercial deep-sea fisheries in many Asian-Pacific countries.


Asunto(s)
Acuicultura , Intoxicación por Ciguatera/prevención & control , Peces , Animales , Organismos Acuáticos , Humanos , Ratones , Polinesia
7.
Toxins (Basel) ; 13(9)2021 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564650

RESUMEN

Ciguatera poisoning is a globally occurring seafood disease caused by the ingestion of marine products contaminated with dinoflagellate produced neurotoxins. Persistent forms of ciguatera, which prove to be highly debilitating, are poorly studied and represent a significant medical issue. The present study aims to better understand chronic ciguatera manifestations and identify potential predictive factors for their duration. Medical files of 49 patients were analyzed, and the post-hospitalization evolution of the disease assessed through a follow-up questionnaire. A rigorous logistic lasso regression model was applied to select significant predictors from a list of 37 patient characteristics potentially predictive of having chronic symptoms. Missing data were handled by complete case analysis, and a survival analysis was implemented. All models used standardized variables, and multiple comparisons in the survival analyses were handled by Bonferroni correction. Among all studied variables, five significant predictors of having symptoms lasting ≥3 months were identified: age, tobacco consumption, acute bradycardia, laboratory measures of urea, and neutrophils. This exploratory, hypothesis-generating study contributes to the development of ciguatera epidemiology by narrowing the list from 37 possible predictors to a list of five predictors that seem worth further investigation as candidate risk factors in more targeted studies of ciguatera symptom duration.


Asunto(s)
Intoxicación por Ciguatera/epidemiología , Hospitalización/estadística & datos numéricos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polinesia/epidemiología , Prevalencia
8.
Toxins (Basel) ; 13(8)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437435

RESUMEN

Ciguatera poisoning is a food intoxication associated with the consumption of fish or shellfish contaminated, through trophic transfer, with ciguatoxins (CTXs). In this study, we developed an experimental model to assess the trophic transfer of CTXs from herbivorous parrotfish, Chlorurus microrhinos, to carnivorous lionfish, Pterois volitans. During a 6-week period, juvenile lionfish were fed naturally contaminated parrotfish fillets at a daily dose of 0.11 or 0.035 ng CTX3C equiv. g-1, as measured by the radioligand-receptor binding assay (r-RBA) or neuroblastoma cell-based assay (CBA-N2a), respectively. During an additional 6-week depuration period, the remaining fish were fed a CTX-free diet. Using r-RBA, no CTXs were detectable in muscular tissues, whereas CTXs were measured in the livers of two out of nine fish sampled during exposure, and in four out of eight fish sampled during depuration. Timepoint pooled liver samples, as analyzed by CBA-N2a, confirmed the accumulation of CTXs in liver tissues, reaching 0.89 ng CTX3C equiv. g-1 after 41 days of exposure, followed by slow toxin elimination, with 0.37 ng CTX3C equiv. g-1 measured after the 6-week depuration. These preliminary results, which need to be pursued in adult lionfish, strengthen our knowledge on CTX transfer and kinetics along the food web.


Asunto(s)
Ciguatoxinas/metabolismo , Peces/metabolismo , Cadena Alimentaria , Animales , Bioacumulación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciguatoxinas/toxicidad , Hígado/metabolismo , Ratones , Músculos/metabolismo
9.
Talanta ; 232: 122400, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074394

RESUMEN

Ciguatera food poisoning affects consumer health and fisheries' economies worldwide in tropical zones, and specifically in the Pacific area. The wide variety of ciguatoxins bio-accumulated in fish or shellfish responsible for this neurological illness are produced by marine dinoflagellates of the genus Gambierdiscus and bio-transformed through the food web. The evaluation of the contents of ciguatoxins in strains of Gambierdiscus relies on the availability of standards and on the development of sensitive and specific tools to detect them. There is a need for sensitive methods for the analysis of pacific ciguatoxins with high resolution mass spectrometry to ensure unequivocal identification of all congeners. We have applied a fractional factorial design of experiment 2^8-3 for the screening of the significance of eight parameters potentially influencing ionization and ion transmission and their interactions to evaluate the behavior of sodium adducts, protonated molecules and first water losses of CTX4A/B, CTX3B/C, 2-OH-CTX3C and 44-methylgambierone on a Q-TOF equipment. The four parameters that allowed to significantly increase the peak areas of ciguatoxins and gambierones (up to a factor ten) were the capillary voltage, the sheath gas temperature, the ion funnel low pressure voltage and the ion funnel exit voltage. The optimized method was applied to revisit the toxin profile of G. polynesiensis (strain TB92) with a confirmation of the presence of M-seco-CTX4A only putatively reported so far and the detection of an isomer of CTX4A. The improvement in toxin detection also allowed to obtain informative high resolution targeted MS/MS spectra revealing high similarity in fragmentation patterns between putative isomer (4) of CTX3C, 2-OH-CTX3C and CTX3B on one side and between CTX4A, M-seco-CTX4A and the putative isomer on the other side, suggesting a relation of constitutional isomerism between them for both isomers.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Cromatografía Líquida de Alta Presión , Ciguatoxinas/análisis , Espectrometría de Masas en Tándem
10.
Mar Pollut Bull ; 165: 112131, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33607453

RESUMEN

Systematic Conservation Planning (SCP) offers concepts and toolboxes to make spatial decisions on where to focus conservation actions while minimizing a variety of costs to stakeholders. Thirty-four studies of Pacific Ocean Tropical Islands were scrutinized to categorize past and current types of applications. It appeared that scenarios were often built on a biodiversity representation objective, opportunity costs for fishers was the most frequent cost factor, and an evolution from simple to sophisticated scenarios followed the need to maximize resilience and connectivity while mitigating climate change impacts. However, proxies and models were often not validated, pointing to data quality issues. Customary management by local communities motivated applications specific to the Pacific region, but several island features remained ignored, including invertebrate fishing, ciguatera poisoning and mariculture. Fourteen recommendations are provided to enhance scenarios' robustness, island specificities integration, complex modelling accuracy, and better use of SCP for island management.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Arrecifes de Coral , Islas , Islas del Pacífico , Océano Pacífico
11.
Artículo en Inglés | MEDLINE | ID: mdl-37359131

RESUMEN

Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.

12.
Toxins (Basel) ; 12(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271904

RESUMEN

Ciguatera poisoning (CP) results from the consumption of seafood contaminated with ciguatoxins (CTXs). This disease is highly prevalent in French Polynesia with several well-identified hotspots. Rapa Island, the southernmost inhabited island in the country, was reportedly free of CP until 2007. This study describes the integrated approach used to investigate the etiology of a fatal mass-poisoning outbreak that occurred in Rapa in 2009. Symptoms reported in patients were evocative of ciguatera. Several Gambierdiscus field samples collected from benthic assemblages tested positive by the receptor binding assay (RBA). Additionally, the toxicity screening of ≈250 fish by RBA indicated ≈78% of fish could contain CTXs. The presence of CTXs in fish was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential link between climate change and this range expansion of ciguatera to a subtropical locale of French Polynesia was also examined based on the analysis of temperature time-series data. Results are indicative of a global warming trend in Rapa area. A five-fold reduction in incidence rates was observed between 2009 and 2012, which was due in part to self-regulating behavior among individuals (avoidance of particular fish species and areas). Such observations underscore the prominent role played by community outreach in ciguatera risk management.


Asunto(s)
Intoxicación por Ciguatera/epidemiología , Brotes de Enfermedades , Animales , Cromatografía Liquida , Ciguatoxinas/análisis , Cambio Climático , Peces , Contaminación de Alimentos , Humanos , Incidencia , Microalgas , Polinesia/epidemiología , Algas Marinas , Espectrometría de Masas en Tándem , Temperatura
13.
Toxins (Basel) ; 12(12)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291542

RESUMEN

Ciguatera poisoning is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera outbreaks are expected to increase worldwide with global change, in particular as a function of its main drivers, including changes in sea surface temperature, acidification, and coastal eutrophication. In French Polynesia, G. polynesiensis is regarded as the dominant source of CTXs entering the food web. The effects of pH (8.4, 8.2, and 7.9), Nitrogen:Phosphorus ratios (24N:1P vs. 48N:1P), and nitrogen source (nitrates vs. urea) on growth rate, biomass, CTX levels, and profiles were examined in four clones of G. polynesiensis at different culture age (D10, D21, and D30). Results highlight a decrease in growth rate and cellular biomass at low pH when urea is used as a N source. No significant effect of pH, N:P ratio, and N source on the overall CTX content was observed. Up to ten distinct analogs of Pacific ciguatoxins (P-CTXs) could be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clone NHA4 grown in urea, at D21. Amounts of more oxidized P-CTX analogs also increased under the lowest pH condition. These data provide interesting leads for the custom production of CTX standards.


Asunto(s)
Ciguatoxinas/metabolismo , Dinoflagelados/efectos de los fármacos , Nitratos/farmacología , Urea/farmacología , Intoxicación por Ciguatera , Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno/farmacología , Fósforo/farmacología
14.
Harmful Algae ; 98: 101888, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33129466

RESUMEN

Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.


Asunto(s)
Dinoflagelados , Espectrometría de Masas en Tándem , Cromatografía Liquida , Dinoflagelados/genética , Islas , Malasia , Océano Pacífico , Filogenia , Polinesia
15.
Toxins (Basel) ; 12(5)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413988

RESUMEN

Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas.


Asunto(s)
Intoxicación por Ciguatera/microbiología , Ciguatoxinas/análisis , Dinoflagelados/metabolismo , Monitoreo del Ambiente , Agua de Mar/parasitología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Ciguatoxinas/toxicidad , Código de Barras del ADN Taxonómico , Dinoflagelados/genética , Dinoflagelados/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Océanos y Mares , Reacción en Cadena de la Polimerasa , Polinesia , Medición de Riesgo , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
16.
Toxins (Basel) ; 12(5)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349302

RESUMEN

The neuroblastoma cell-based assay (CBA-N2a) is widely used for the detection of marine biotoxins in seafood products, yet a consensus protocol is still lacking. In this study, six key parameters of CBA-N2a were revisited: cell seeding densities, cell layer viability after 26 h growth, MTT incubation time, Ouabain and Veratridine treatment and solvent and matrix effects. A step-by-step protocol was defined identifying five viability controls for the validation of CBA-N2a results. Specific detection of two voltage gated sodium channel activators, pacific ciguatoxin (P-CTX3C) and brevetoxin (PbTx3) and two inhibitors, saxitoxin (STX) and decarbamoylsaxitoxin (dc-STX) was achieved, with EC50 values of 1.7 ± 0.35 pg/mL, 5.8 ± 0.9 ng/mL, 3 ± 0.5 ng/mL and 15.8 ± 3 ng/mL, respectively. When applied to the detection of ciguatoxin (CTX)-like toxicity in fish samples, limit of detection (LOD) and limit of quantification (LOQ) values were 0.031 ± 0.008 and 0.064 ± 0.016 ng P-CTX3C eq/g of flesh, respectively. Intra and inter-assays comparisons of viability controls, LOD, LOQ and toxicity in fish samples gave coefficients of variation (CVs) ranging from 3% to 29%. This improved test adaptable to either high throughput screening or composite toxicity estimation is a useful starting point for a standardization of the CBA-N2a in the field of marine toxin detection.


Asunto(s)
Bioensayo , Peces/metabolismo , Toxinas Marinas/análisis , Neuronas/efectos de los fármacos , Agonistas del Canal de Sodio Activado por Voltaje/análisis , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Ciguatoxinas/análisis , Ciguatoxinas/toxicidad , Relación Dosis-Respuesta a Droga , Límite de Detección , Toxinas Marinas/toxicidad , Ratones , Neuroblastoma , Neuronas/metabolismo , Neuronas/patología , Ouabaína/farmacología , Oxocinas/análisis , Oxocinas/toxicidad , Reproducibilidad de los Resultados , Saxitoxina/análisis , Saxitoxina/toxicidad , Factores de Tiempo , Veratridina/farmacología , Agonistas del Canal de Sodio Activado por Voltaje/toxicidad , Canales de Sodio Activados por Voltaje/metabolismo
17.
PLoS One ; 15(4): e0231400, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294110

RESUMEN

Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain ß-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.


Asunto(s)
Dinoflagelados/enzimología , Sintasas Poliquetidas/genética , Transcriptoma , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Ciguatoxinas/metabolismo , Dinoflagelados/clasificación , Dinoflagelados/aislamiento & purificación , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Filogenia , Sintasas Poliquetidas/metabolismo , Polinesia , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo
18.
Toxins (Basel) ; 11(12)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861242

RESUMEN

Ciguatera poisoning (CP) is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. The toxin production and toxin profiles were explored in four clones of G. polynesiensis originating from different islands in French Polynesia with contrasted CP risk: RIK7 (Mangareva, Gambier), NHA4 (Nuku Hiva, Marquesas), RAI-1 (Raivavae, Australes), and RG92 (Rangiroa, Tuamotu). Productions of CTXs, maitotoxins (MTXs), and gambierone group analogs were examined at exponential and stationary growth phases using the neuroblastoma cell-based assay and liquid chromatography-tandem mass spectrometry. While none of the strains was found to produce known MTX compounds, all strains showed high overall P-CTX production ranging from 1.1 ± 0.1 to 4.6 ± 0.7 pg cell-1. In total, nine P-CTX analogs were detected, depending on strain and growth phase. The production of gambierone, as well as 44-methylgamberione, was also confirmed in G. polynesiensis. This study highlighted: (i) intraspecific variations in toxin production and profiles between clones from distinct geographic origins and (ii) the noticeable increase in toxin production of both CTXs, in particular CTX4A/B, and gambierone group analogs from the exponential to the stationary phase.


Asunto(s)
Dinoflagelados/metabolismo , Toxinas Biológicas/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dinoflagelados/crecimiento & desarrollo , Ratones , Polinesia , Especificidad de la Especie , Toxinas Biológicas/toxicidad
19.
Harmful Algae ; 84: 95-111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31128817

RESUMEN

To date, the genus Ostreopsis comprises eleven described species, of which seven are toxigenic and produce various compounds presenting a major threat to human and environmental health. The taxonomy of several of these species however remains controversial, as it was based mostly on morphological descriptions leading, in some cases, to ambiguous interpretations and even possible misidentifications. The species Ostreopsis lenticularis was first described by Y. Fukuyo from French Polynesia using light microscopy observations, but without genetic information associated. The present study aims at revisiting the morphology, molecular phylogeny and toxicity of O. lenticularis based on the analysis of 47 strains isolated from 4 distinct locales of French Polynesia, namely the Society, Australes, Marquesas and Gambier archipelagos. Observations in light, epifluorescence and field emission scanning electron microscopy of several of these strains analyzed revealed morphological features in perfect agreement with the original description of O. lenticularis. Cells were oval, not undulated, 60.5-94.4 µm in dorso-ventral length, 56.1-78.2 µm in width, and possessed a typical plate pattern with thecal plates showing two sizes of pores. Phylogenetic analyses inferred from the LSU rDNA and ITS-5.8S sequences revealed that the 47 strains correspond to a single genotype, clustering with a strong support with sequences previously ascribed to Ostreopsis sp. 5. Clonal cultures of O. lenticularis were also established and further tested for their toxicity using the neuroblastoma cell-based assay and LCMS/MS analyses. None of the 19 strains tested showed toxic activity on neuroblastoma cells, while LCMS/MS analyses performed on the strains from Tahiti Island (i.e. type locality) confirmed that palytoxin and related structural analogs were below the detection limit. These findings allow to clarify unambiguously the genetic identity of O. lenticularis while confirming previous results from the Western Pacific which indicate that this species shows no toxicity, thus stressing the need to reconsider its current classification within the group of toxic species.


Asunto(s)
Dinoflagelados , ADN Ribosómico , Océano Pacífico , Filogenia , Polinesia
20.
J Chromatogr A ; 1571: 16-28, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30100527

RESUMEN

Ciguatera Fish Poisoning (CFP) is primarily caused by consumption of tropical and sub-tropical fish contaminated by Ciguatoxins (CTXs). These lipid-soluble, polyether neurotoxins are produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. While there is no regulatory level in Europe for CTXs, the European Food Safety Authority (EFSA) adopted the United States guidance level of 0.01 µg P-CTX1B eq.kg-1 of fish. This limit is extremely low and requires significant improvement in the detection of CTXs. In this study, we compared analytical protocols based on liquid chromatography coupled to tandem low or high resolution mass spectrometry (LC-LRMS or HRMS) to find the best conditions for sensitivity and/or selectivity. Different approaches such as LC conditions, ion choice and acquisition modes, were evaluated to detect the Pacific-ciguatoxins (P-CTXs) on a triple quadrupole (API4000 Qtrap, Sciex) or a quadrupole time of flight (QTOF 6550, Agilent Technologies) spectrometer. Moreover, matrix effects were calculated using matrix-matched calibration solutions of P-CTX1B and P-CTX3C prepared in purified fish extract. Subsequently, the method performance was assessed on naturally contaminated samples of seafood and phytoplankton. With LRMS, the ammoniated adduct ion used as a precursor ion showed an advantage for selectivity through confirmatory transitions, without affecting signal-to-noise ratios, and hence limits of detection (LODs). As also reported by some studies in the literature, methanol-based mobile phase gave better selectivity and sensitivity for the detection of P-CTXs. While the LOD for P-CTX1B and P-CTX3C met the EFSA recommendation level when using LRMS, the findings suggested careful evaluation of instrumental parameters for determination of CTXs. LODs were significantly higher for HRMS, which currently results in the need for a significantly higher sample intake. Nevertheless, HRMS allowed for the identification of artefacts and may allow for improved confirmation of the identity of P-CTXs analogues. Consequently, LRMS and HRMS are considered complementary to ensure adequate quantitation and identification of P-CTXs.


Asunto(s)
Cromatografía Liquida , Intoxicación por Ciguatera/diagnóstico , Análisis de los Alimentos/métodos , Espectrometría de Masas en Tándem , Animales , Ciguatoxinas , Dinoflagelados/química , Europa (Continente) , Peces , Límite de Detección , Alimentos Marinos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...